
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 291 (2006) 723–739
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Handling uncertainties in mixed numerical-experimental
techniques for vibration based material identification

T. Lauwagiea,�, H. Solb, W. Heylena

aDepartment of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300b, B-3001 Leuven, Belgium
bDepartment of Mechanics of Materials and Constructions, Vrije Universiteit Brussel,

Pleinlaan 2, B-1050 Brussels, Belgium

Received 29 July 2004; received in revised form 22 June 2005; accepted 23 June 2005

Available online 2 September 2005
Abstract

Mixed numerical-experimental techniques (MNETs) combine experimental test results and numerical
modelling techniques with the goal of identifying physical properties. Experimental results always come
with a level of uncertainty. This input uncertainty will migrate through the MNET routine, and will result
in an uncertainty on the identified parameters. Therefore, MNET procedures should not only provide an
estimated value for the physical properties, they should also provide additional information about the
reliability of the results obtained. This paper presents a routine that is able to transform the uncertainty on
the input parameters of a MNET into the uncertainty on the output parameters. The approach does not
require any change of the initial MNET routine, it is just an additional computational step that has to be
performed after the MNET has identified the deterministic values of the unknown physical properties. The
routine is demonstrated on a vibration based MNET used to identify elastic material properties.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration based material identification methods are founded on the fundamental relation
between the vibratory behaviour of a structure and its elastic material properties. These methods
derive the elastic material properties from the measured vibratory behaviour of a test sample. The
see front matter r 2005 Elsevier Ltd. All rights reserved.
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earliest identification methods based on this principle used analytical formulas to describe the
vibratory behaviour of the specimens. The analytical models are restricted to homogeneous and
isotropic materials, and are the limiting factors to extend the vibration based techniques to more
complex materials such as orthotropic or layered materials. In 1986, Sol [1] successfully replaced
the analytical formulas by special purpose finite element (FE) models. The method he proposed
could identify the four engineering constants of an orthotropic material—i.e. E1, E2, G12 and
n12—from the first three resonance frequencies of a plate-shaped specimen and the fundamental
bending frequencies of two beam-shaped specimens. The two beams have to be oriented parallel
with the two principal material directions, Fig. 1. For unidirectionally reinforced composites, one
of the beams has to be cut out of the material in the direction perpendicular to the fibre direction.
In some cases, this appeared to be impossible without damaging the material of the beam.
Therefore the initial method was modified, to enable identification of the material properties from
the first five frequencies of the test plate. A critical review of this modified procedure can be found
in Ref. [2].
The use of finite element models complicates the implementation of the identification

procedure. Finite element models allow the computation of the resonance frequencies of a
particular structure made out of a specific material. But the finite element formulation
cannot be reversed to a formulation that provides the material properties from the resonance
frequencies of the structure. The material identification problem has to be solved in an
inverse way. Fig. 2 displays the general solution scheme of the identification problem. The
resonance frequencies of the test sample are measured by means of a modal test. These fre-
quencies are the target output of the finite element model. The numerical frequencies of
the finite element model of the test sample are computed using a set of trail values for the
unknown material parameters. The numerical and experimental frequencies can now be
compared, and the values of the unknown model parameters are corrected in order minimize
the differences between the two frequency sets. The improved material properties are inserted in
the FE-model and a new iteration cycle is started. Once the numerical and experimental
frequencies match, the procedure is aborted, and the desired material properties can be found in
Fig. 1. Typical test specimen set for the identification method of Sol [1].
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Fig. 2. General flowchart for MNET based elastic material identification procedure.
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the database of the FE-model. This procedure has already proven to be a stable and reliable tool
to identify elastic material properties [2].
Since these identification procedures consist of two parts, an experimental part and a numerical

part, they are often referred to as mixed numerical-experimental techniques, or MNETs.
Mathematically, the optimization step of the MNET can be expressed as follows [3]:

minimize
Dp

ðfDpgT½Sm�
T½Sm�fDpg � 2fDrgT½Sm�fDpgÞ. (1)

The vectors fDpg and fDrg contain the parameter and response differences, the matrix ½Sm� is the
sensitivity matrix and groups all the sensitivity coefficients. Each sensitivity coefficients describes
the rate of change of a particular resonance frequency with respect to a changes of a specific
material parameter. To ensure a stable convergence of the iterative procedure, the optimization
problem (1) is solved by considering a set of box constraints on the optimization parameters—the
elements of the vector fDpg—in such a way that each material parameter cannot change more than
25% during one iteration step.



ARTICLE IN PRESS

T. Lauwagie et al. / Journal of Sound and Vibration 291 (2006) 723–739726
2. The interval approach

2.1. Measurement errors

Roughly spoken, each measurement error can be classified as one of the following types: an
illegitimate error, a systematic error or a random error. Illegitimate errors are mistakes and
blunders, caused by carelessness or poor judgement, i.e. misreading the display of the
measurement device. Since illegitimate errors should be avoided, they will be disregarded in the
rest of this text.
The second type of errors are the systematic errors. A systematic error can be defined as a

reproducible error that biases the measured value in a given direction [4], i.e. a systematic
overestimation or underestimation of the true value. A systematic error is by definition
reproducible, therefore it cannot be reduced by taking the average value of a large number of
measurements. However, the reproducible character of the systematic error makes it possible to
estimate the bias on the measured value by means of a calibration procedure. The systematic error
can then be compensated with the estimated value of the bias. Note that systematic errors can
only be reduced by calibrating the measurement equipment, they cannot be avoided.
The last type of error is the random error. A random error causes fluctuations in the results of a

measurement when the measurement is repeated a number of times [4]. Random errors occur for a
variety of reasons, they can be caused by noise or other external disturbances which cannot be
taken into account. Unlike systematic errors, random errors shift the measured value in an
arbitrary direction. This stochastic behaviour allows to reduce random errors by averaging the
values of a large number of measurements.
In the previously mentioned material identification MNETs the uncertain input parameters are

the dimensions, mass and resonance frequencies of the test samples. According to our experience,
the spreading on these values is almost non-existing. The uncertainty is dominated by systematic
error sources like the residual offset that remains after calibration and the finite accuracy of the
measurement device. The random error can therefore be ignored. The most suited way to
represent these types of uncertainties are uncertainty intervals.
Note that in a MNET, the numerical models should accurately represent the considered test

samples. If this is the case, the identified parameter values will be equal to the true physical values.
In reality however, non-homogeneous distributions of the material properties and non-perfect
constitutive relations will cause deviations between the model and reality. For the computation of
the uncertainty intervals in this paper, the numerical model will be assumed to be correct, which
means that only measurement errors will be considered as error sources.
2.2. Uncertainty intervals

An uncertainty interval defines an upper and lower bound between which the value of the
considered parameter can vary. It does not provide any information about the probability
distribution of the values between these two bounds. The following notation will be used to
represent an uncertainty interval.

qi 2 ½q
ð�Þ

i ; qðþÞi � 8i ¼ 1; . . . ; nin, (2)
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where qi is one of the nin uncertain input parameters of the model, and can take any value which is
larger than or equal to q

ð�Þ

i and smaller than or equal to q
ðþÞ

i . By considering the relations between
the input and output parameters f pj

;

pj ¼ f pj
ðq1; q2; . . . ; qnin

Þ 8j ¼ 1; . . . ; nout, (3)

the input intervals can be used to derive the uncertainty intervals on the output parameters pj.

pj 2 ½p
ð�Þ

j ; pðþÞj � 8j ¼ 1; . . . ; nout. (4)

The lower bound of this interval p
ð�Þ

j is the lowest possible value that can be obtained

for the output parameter pj, when all the input parameters qi can take any value between

q
ð�Þ

i and q
ðþÞ

i . The upper bound p
ðþÞ

j represents is the highest possible value that can be obtained

for the output parameter pj. The bounds of the output intervals can be interpreted as ‘worst-case’

values.

2.3. Interval calculations

The most straightforward way to perform calculations with intervals is to redefine the
standard mathematical operators like additions, subtractions, multiplications and divisions in
such a way that they can handle intervals instead of the traditional integers or floats. This
approach is generally referred to as the ‘interval arithmetic’ approach, and is mainly based on the
work of Moore [5]. The ‘interval arithmetic’ approach has two major drawbacks. The first
drawback deals with the practical problem of implementation. The use of the interval arithmetic
concept to estimate the uncertainties on the material parameters implies that the whole
identification procedure—finite-element routines, sensitivity analysis and cost function minimiza-
tion—could have to be reimplemented using interval operations. The second drawback, called
conservatism, is illustrated by the following example: consider a variable x that varies between 0
and 1, and calculate the interval of the variable y if y ¼ x2 � x. By ignoring the correlation
between the two input parameters—x2 and x—the result y 2 ½�1; 1� is found. However, the
correct solution to this problem is y 2 ½�0:25; 0� and can only be obtained if the correlation
between x and x2 is taken into account. This simple example clearly indicates that ignoring
existing variable correlations yields erroneous results. More details about this example, together
with an extensive discussion on conservatism in interval arithmetics can be found in Ref. [6]. So
far, it has not been investigated whether it is possible to keep track of the existing correlations
between the variables of complex numerical procedures. With the current state of affairs, it is not
possible to avoid conservatism in complex routines like finite-element solvers. Therefore, the use
of interval arithmetics should not be considered to handle uncertainties in MNET based
identification routines.
An alternative way to solve the interval arithmetical problem, is to reformulate it as a

constrained optimization problem in which the input variables qi are the optimization parameters,
and the input–output relation is the objective function. The upper bound of the uncertainty
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interval of a particular output parameter pj can be found by maximizing the objective function,
i.e. the value of the output parameter pj, while considering the bounds of the uncertainty intervals
on the input parameters as constraints on the optimization parameters—Eq. (5).

p
ðþÞ

j ! maximize f pj
ðq1; . . . ; qnin

Þ

subject to qiXq
ð�Þ

i 8i ¼ 1; . . . ; nin,

qipq
ðþÞ

i 8i ¼ 1; . . . ; nin. ð5Þ

The lower bound of the uncertainty interval can be found by minimizing the objective function
using the same constraints on the optimization parameters. Now, consider a nin dimensional
space, in which each point defines a unique set of values for the different input parameters. In this
input parameter space, the constraints of Eq. (5) define a nin-dimensional hyper volume. Only the
points inside this hyper volume are valid points, i.e. points that are associated with parameter
values that comply with the considered parameter intervals. One of the commonly used
approaches to solve the optimization problem (5) is to sample the hyper volume defined by the
input parameter intervals, and to calculate the values of the output parameters for every sample.
The highest and lowest value obtained for a particular output parameter defines the upper and
lower bound of the uncertainty interval on this parameter. Fig. 3 presents a two-dimensional
example. A general implementation of this approach was proposed by Hanss [7,8] and is called
‘the standard method’. The procedure is applicable to a wide variety of problems but has a
number of important shortcomings. The total number of samples that has to be evaluated equals
mnin , where m represents the number of samples used to sample one uncertainty interval—m

equals 8 in the case of Fig. 3. The total number of samples, and thus necessary computation time,
increases exponentially with the number of input parameters. A second drawback is that the
obtained results are only approximations of the true intervals, unless the minimum and maximum
of the cost function happens to coincide with one of the sample positions. In the example of Fig. 3
the true maximum of the cost function is found, but the obtained minimum will be an
approximation. The accuracy of the solution can only be improved by decreasing the sampling
distance, which leads to an exponential increase of the number of samples. A small improvement
Fig. 3. Two-dimensional example of the standard method.
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Fig. 4. Two-dimensional example of the reduced method for monotonic input–output relations.
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of the accuracy will therefore be associated with a dramatic increase of the required computation
time.
However, these two drawbacks are not present when the relations between the input and output

parameters f pj
are monotonic functions, see Fig. 4. In the case of monotonic input–output

relations the extreme values of the output parameters have to lay in points where the different
input parameters are maximal or minimal. This means that only the samples which are located on
the vertices of the hyper volume have to be considered, all the other sample positions can be
ignored since they cannot lead to an extreme value of any of the output parameters. Monotonicity
of the input–output relations thus reduces the number of sample that have to be evaluated to 2nin .
Monotonicity also guarantees the exactness of the obtained interval bounds since the extreme
values of the cost function will be reached in one of the locations of the used samples. The
implementation of the standard method for monotonic input–output relations is called the
reduced method.
3. The error estimation algorithm

In the case of the considered MNET identification procedures, even the application of the
reduced method requires an extensive computational effort. Consider the mixed plate-beam
procedure that was presented in the introduction. This routine has 17 input parameters, the
application of the reduced method would require 217 ¼ 131,072 runs of the identification
procedure. Even with a computer platform that could run the whole identification procedure in
1 s, the uncertainty analysis would take more than 1.5 days. To reduce the computational effort,
the finite element model of the identification procedure can be replaced by an approximation. An
excellent approximation can be obtained by linearizing the finite element model in the working
point defined by the solution of the last iteration step. The discrepancy between the initial and
linearized model will be minimal because the uncertainty calculations only require tiny variations
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of the model parameters. Also note that the linearization automatically ensures the monotonicity
of the input–output relations.

3.1. Single-model identification routines

3.1.1. The algorithm

Linearizing the frequency response surfaces of the finite element model by computing the first-
order Taylor approximation in the point defined by the obtained material parameters provides
relation (6). This equation describes the influence of a variation of the material parameters on the
resonance frequencies of the test specimen,

fDf g ¼ ½Sm�fDpg (6)

in which the vector fDpg contains the applied parameter changes, the vector fDf g contains the
resulting frequency changes, and ½Sm� is the same sensitivity matrix as in Eq. (1). The relation of
Eq. (6) can be inverted by using the pseudo-inverse of the sensitivity matrix. The inversion
provides Eq. (7), which expresses the influence of a change of the frequencies on the identified
material parameters.

fDpg ¼ ½Sm�
yfDf g. (7)

Expression (7) thus allows to convert the uncertainties on the frequencies into uncertainties on the
obtained material parameters. It is obvious that there is an uncertainty on the experimental
frequencies, but there is also an uncertainty on the numerical frequencies. To construct the finite
element model of the test specimen, the specimen’s geometry and mass has to be measured. The
uncertainties on the length, width, thickness and weight result in an uncertainty on the finite
element model and thus in an uncertainty on the numerical frequencies. In the identification
procedure the material parameters are obtained by comparing—and matching—the experimental
and numerical frequencies. Therefore, the frequency uncertainties consist of two parts: an
experimental part fDf expg and a numerical part fDf numg:

fDf g ¼ fDf expg þ fDf numg. (8)

The uncertainties on the numerical frequencies can be related to the uncertainties on the
geometrical parameters by means of a first-order Taylor approximation of the frequency response
surfaces in a working point defined by the values of the geometrical parameters of the finite
element model. This process results in the relation of Eq. (9).

fDf numg ¼ ½Sg�fDgg. (9)

The vector fDgg contains the geometrical parameter differences. The matrix ½Sg� is the geometry
sensitivity matrix, and groups the partial derivatives of the resonance frequencies with respect to
the length, width, thickness and mass of the sample. Inserting the expressions of Eqs. (8) and (9)
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into Eq. (7) provides a relation between the uncertainties on the inputs and outputs of the
identification procedure.

fDpg ¼ ½Sm�
yðfDf expg þ ½Sg�fDggÞ, ð10Þ

¼ ½Sm�
yfDf expg|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

frequency
contribution

þ ½Sm�
y½Sg�fDgg|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

geometry
contribution

. ð11Þ

By grouping the terms of Eq. (11) as

½w� ¼ ½½Sm�
y ½Sm�

y½Sg��, (12)

fDig ¼
fDf expg

fDgg

( )
, (13)

the influence of a change of the experimental frequencies and geometrical model parameters on a
particular material property can be written as

Dpi ¼
X

j

wijDij. (14)

To obtain the bounds of the uncertainty interval on the material property pi, the maximum and
minimum value of Dpi have to be calculated. To maximize Dpi, the contributions of the different
summation terms Dpij

¼ wijDij have to be maximized. To express the maximum value of Dpij
in

function of the input uncertainties, two different cases have to be considered. In the case where wij

is a non-negative number, the maximum contribution of the input parameter ij is given by

maxDpij
¼ wijDi

ðþÞ

j , (15)

where DiðþÞj is the upper bound of the uncertainty interval on pi. When wij is negative, the
maximum contribution to Dpi is given by

maxDpij
¼ wijDi

ð�Þ

j ¼ jwijjDi
ðþÞ

j , (16)

where Dið�Þj is the lower bound of the uncertainty interval on pi. The second equality of Eq. (16) is
valid since the uncertainty intervals on the input parameters are assumed to be symmetrical, or
DiðþÞj ¼ �Di

ð�Þ

j . The combination of Eqs. (15) and (16) provides the following expression of the
maximum of Dpi.

maxDpi ¼
X

j

jwijjDi
ðþÞ

j . (17)

The expression for the minimum of Dpi can be derived in a similar way, elaboration of the
problem shows that

minDpi ¼
X

j

jwijjDi
ð�Þ

j ¼ �maxDpi, (18)

which means that the uncertainty intervals on the material properties will be symmetrical too.
Also note that the relative importance of the uncertainty on a particular input parameter ik in the
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total uncertainty on the material property pi can be expressed as

jwikjDi
ðþÞ

kP
j jwijjDi

ðþÞ

j

. (19)

Eq. (19) allows the identification of the main sources of uncertainty on a particular material
parameter.
3.1.2. Example

The presented uncertainty method is illustrated using a single-plate identification routine. In
this example, the material properties of a brass plate are derived from the first five plate
frequencies. Table 1 presents a full description of the properties of the test plate, and the
uncertainties on these properties.
The elastic material properties of the plate were identified using the deterministic values of the

input parameters. The flowing results were found: Ex ¼ 105:0GPa, Ey ¼ 100:0GPa, Gxy ¼

36:0GPa and nxy ¼ 0:400. In a second phase the uncertainty intervals on the input parameters—
Table 1—were transformed into uncertainty intervals on the elastic properties using the procedure
described in the previous paragraph. Table 2 presents the obtained uncertainty intervals on the
identified elastic properties. Table 3 lists the relative importance of the uncertainties of the
different input parameters for each output parameter.
The uncertainty on the two Young’s moduli and the shear modulus is dominated by the

uncertainty on the thickness. This clearly shows that an accurate measurement of the thickness is
extremely important to obtain good material properties. The uncertainty on Poisson’s ratio is
mainly controlled by the uncertainty on the experimental frequencies. The error on the thickness
and mass of the test specimen do not influence the uncertainty on Poisson’s ratio. This
observation can be explained as follows: the change of the thickness or the mass has the same
effect on all the resonance frequencies of the test plate, which means that there is no effect on the
relative difference between the frequencies. Since Poisson’s ratio is not controlled by the absolute
values of the frequencies but by the relative difference between the various frequencies [1], the
uncertainty on the mass or thickness will not affect the uncertainty on Poisson’s ratio.
Table 1

Values and uncertainties for the input parameters

Value Uncertainty interval Abs. error Units

Length 100.00 99.98 — 100.02 �0:02 mm

Width 100.00 99.98 — 100.02 �0:02 mm

Thickness 0.800 0.799 — 0.801 �0:001 mm

Mass 65.000 64.999 — 65.001 �0:001 g

Freq-1 177.20 177.11 — 177.29 �0:09 Hz

Freq-2 264.07 263.94 — 264.20 �0:13 Hz

Freq-3 353.20 353.02 — 353.37 �0:18 Hz

Freq-4 467.69 467.45 — 467.92 �0:23 Hz

Freq-5 471.66 471.42 — 471.89 �0:24 Hz
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Table 2

The uncertainty intervals for the identified material properties

Value Uncertainty interval Abs. error Rel. error (%)

Ex 105.00 104.13 — 105.87 �0:8720 �0:83
Ey 100.00 99.18 — 100.82 �0:8176 �0:82
Gxy 36.00 35.79 — 36.21 �0:2093 �0:58
nxy 0.400 0.398 — 0.402 �0:0023 �0:57

Table 3

The relative contributions of the input parameters to the output uncertainty

Freq 1 (%) Freq 2 (%) Freq 3 (%) Freq 4 (%) Freq 5 (%) Length (%) Width (%) Thick. (%) Mass (%)

Ex 1.9 8.2 2.2 14.7 18.1 7.2 2.3 45.1 0.2

Ey 1.7 9.0 2.5 16.8 14.5 2.5 7.4 45.5 0.2

Gxy 11.6 2.9 2.8 5.7 5.6 3.4 3.4 64.4 0.3

nxy 0.8 26.1 26.9 17.1 15.5 6.8 6.8 0.0 0.0

Table 4

Comparison between the results of the full MNET and the linear approximation

MNET Lin. approx. Diff. (%)

Ex 105.8720 105.8792 0.0068

Ey 100.1443 100.1516 0.0073

Gxy 36.0988 36.0989 0.0004

nxy 0.4010 0.4011 0.0064
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3.1.3. Validation
In a first step the accuracy of the linear approximation was evaluated by calculating the worst-

case scenario for the upper value of Ex with both the full MNET routine and its linear
approximation. The worst-case scenario for the upper Ex value can be identified by looking at the
signs of the coefficients of the first row of the w matrix, and will be obtained with the maximal
allowable values for the length, mass, the second, third and fifth resonance frequency in
combination with the minimal allowable values for the width, thickness and the resonance
frequencies of modes one and four. Table 4 shows the results obtained. The average error of the
linearization was estimated at 0.005%. Note that this is the error for a worst-case scenario; the
approximation will be even better for data points that are located closer to the working point.
Because of the high accuracy and low computation time, this approximation is also very suitable
for Monte Carlo simulations.
The correctness of the obtained uncertainty bounds was checked with a Monte Carlo

simulation. The uncertainty intervals on the input properties were sampled using a uniform
probability density distribution. In this way 5000 sets of nine input parameters—length, width,
thickness, mass and five resonance frequencies—were generated. The associated material
parameters were estimated with the previously validated linear approximation. Fig. 5 compares
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Fig. 5. The results of the Monte Carlo simulation. The dashed line represents the uncertainty bounds obtained with the

presented routine.
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the obtained material properties with the estimated uncertainty bounds . The most important
conclusion is that none of the 5000 Monte Carlo test points results in material properties that are
not contained within the predicted uncertainty bounds. Although the Monte Carlo results might
give the impression that the obtained uncertainty bounds are an overestimation of the real
uncertainty bounds, this is not the case. The test point that was used to evaluate the precision of
the linear approximation shows that the output values on the uncertainty bound can be reached.
None of the Monte Carlo test points resulted in a value close to the parameter bounds because the
probability of reaching such a point is minimal—but not impossible—for a procedure with nine
uncertain input parameters.

3.2. Multimodel identification routines

3.2.1. The algorithm
The method can easily be extended to handle uncertainties in multimodel identification

routines. Consider a multimodel identification routine that uses resonance frequencies of ns

different test samples. The following set of equations can be written for each of the ns models:

fDf ðiÞg ¼ ½SðiÞm �fDpg 8i 2 1; . . . ; ns (20)

in which the superscript �ðiÞ indicates that a particular quantity of the ith specimen is being
considered. The equations of all the test samples can be combined to one global system as

fDf glob
g ¼ ½Sglob

m �fDpg, (21)

where fDf glob
g and ½Sglob

m � are the global frequency difference vector and sensitivity matrix for the
material properties, respectively. fDf glob

g and ½Sglob
m � are both block vectors in which the ith block

line contains the data of the ith specimen, or

fDf glob
g ¼

ff ð1Þg

..

.

ff ðnsÞg

8>><
>>:

9>>=
>>;; ½Sglob

m � ¼

½Sð1Þm �

..

.

½SðnsÞ
m �

2
6664

3
7775. (22)

The influence of the geometrical errors on the frequencies of the finite element models of the
various test specimens is given by

fDf ðiÞnumg ¼ ½S
ðiÞ
g �fDgðiÞg 8i 2 1; . . . ; ns. (23)

These ns sets of equations can also be combined into one global set as

fDf glob
numg ¼ ½S

glob
g �fDgglobg, (24)

where the global difference vectors are given by

fDf glob
numg ¼

ff ð1Þnumg

..

.

ff ðnsÞ
numg

8>>><
>>>:

9>>>=
>>>;; fDgglobg ¼

fgð1Þg

..

.

fgðnsÞg

8>><
>>:

9>>=
>>;. (25)
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The global sensitivity matrix for the geometrical parameters is a block diagonal matrix with the
following structure:

½Sglob
g � ¼

½Sð1Þg � � � � ½0�

..

. . .
. ..

.

½0� � � � ½SðnsÞ
g �

2
6664

3
7775. (26)

In a similar way as in the single-model case, it can be shown that the maximal change of a
particular material parameter can be expressed as

maxDpi ¼
X

j

jwijjDi
ðþÞ

j ¼ �minDpi, (27)

where ½wij� and fDig have the same structure as specified by Eqs. (12) and (13), but have to be
calculated using the global vectors and matrices as defined by Eqs. (22), (25) and (26). Remember
that Eq. (27) is only valid if the uncertainly intervals of all the input parameters—experimental
frequencies and geometrical properties—are symmetrical. As in the case of a single-model
identification routine, the relative importance of each input parameter in the total uncertainty on
a particular material parameter can be obtained with Eq. (19).
Table 5

Values and uncertainties for the input parameters

Value Uncertainty interval Abs. Error Units

Plate

Length 100.00 99.98 — 100.02 �0:02 mm

Width 100.00 99.98 — 100.02 �0:02 mm

Thickness 0.800 0.799 — 0.801 �0:001 mm

Mass 65.000 64.999 — 65.001 �0:001 g

Freq-1 177.20 177.11 — 177.29 �0:09 Hz

Freq-2 264.07 263.94 — 264.20 �0:13 Hz

Freq-3 353.20 353.02 — 353.37 �0:18 Hz

Beam 01

Length 100.00 99.98 — 100.02 �0:02 mm

Width 20.00 19.98 — 20.02 �0:02 mm

Thickness 0.800 0.799 — 0.801 �0:001 mm

Mass 13.000 12.999 — 13.001 �0:001 g

Freq-1 296.80 196.64 — 296.94 �0:15 Hz

Beam 901

Length 100.00 99.98 — 100.02 �0:02 mm

Width 20.00 19.98 — 20.02 �0:02 mm

Thickness 0.800 0.799 — 0.801 �0:001 mm

Mass 13.000 12.999 — 13.001 �0:001 g

Freq-1 289.61 189.47 — 289.76 �0:14 Hz
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Table 6

The uncertainty intervals for the identified material properties

Value Uncertainty interval Abs. error Rel. error (%)

Ex 105.00 104.07 — 105.93 �0:9264 �0:88
Ey 100.00 99.12 — 100.88 �0:8844 �0:88
Gxy 36.00 35.80 — 36.20 �0:1963 �0:55
nxy 0.400 0.396 — 0.404 �0:0039 �0:99

-1.0 -0.5 0.0 0.5 1.0
Ex–modulus error (%)

-1.0 -0.5 0.0 0.5 1.0
Ey– modulus error (%)

-1.0 -0.5 0.0 0.5 1.0
Gxy – modulus error (%)

-1.0 -0.5 0.0 0.5 1.0
Nuxy–Poisson’s ratio error (%)

Fig. 6. Comparison of the output uncertainty of the single-plate and mixed plate-beam routines.
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3.2.2. Example
The multimodel routine can estimate the uncertainty intervals on the material parameters when the

mixed plate-beam identification routine is used. The uncertainty intervals on the input parameters are
chosen in the same way as for the single-plate identification routine. Table 5 gives an overview of the
input uncertainties, the associated output uncertainties are presented in Table 6.
The proposed uncertainty methods can be used to compare different possible test

configurations. From a deterministic point of view, there is absolutely no difference between
the single-plate and the mixed plate-beam identification routine, both methods yield exactly the
same material properties. However, the two approaches do not result in the same uncertainty on
the identified parameters—see plots of Fig. 6. There is hardly any difference between the two
methods when it comes to the reliability of the identified elastic and shear modulus values, but the
single plate routine results in a considerably lower uncertainty on Poisson’s ratio than the mixed
plate-beam routine. This indicates that the single plate routine should be preferred, especially
when the goal is to estimate the value of Poisson’s ratio.
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3.2.3. Possibility versus probability

The multimodel algorithm also provides a opportunity to illustrate the interpretation of the
uncertainty intervals. In Section 3.1.3 the uncertainty intervals were compared with the results of
a Monte Carlo simulation for the case where the elastic properties were estimated from the first
five resonance frequencies of one single test plate. When more test plates are available, the
material properties could be estimated from the resonance frequencies of all plates by means of
the multimodel updating routine. The calculation was performed for the case where two or three
test plates are available. The dashed lines in Fig. 7 represent the obtained uncertainty intervals.
The uncertainty intervals are the same for all three cases. It is important to know that a dramatic
increase of the number of uncertain input parameters—from nine in the case of the single-plate
routine to 27 in the case of the multimodel routine that uses three plates—does not automatically
results in an increase of the uncertainty intervals on the identified material parameters. If the
number of input parameters increases, each input parameter will have—relatively spoken—a
smaller impact on the output values. This results in a smaller contribution of each input
uncertainty to the output uncertainty, but the total output uncertainty will remain the same since
there are more input uncertainties that are contributing.
The Monte Carlo simulations show a completely different picture, they suggest a reduction of

the uncertainty. With an increasing number of input parameters, it becomes more and more
unlikely that all the input parameters will shift the value of a particular output quantity in the
same direction. The chance that the influence of one input parameter will be compensated by the
104.0 104.5 104.0 105.5 106.0
E x–modulus (GPa) - 1 plate

104.0 104.5 104.0 105.5 106.0
Ex–modulus (GPa) - 2 plates

104.0 104.5 104.0 105.5 106.0
Ex–modulus (GPa) - 3 plates

Fig. 7. Comparison between the uncertainty bounds and the Monte Carlo results for the multi-plate routines. The

dashed line represents the uncertainty bounds as obtained with the presented routine.
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opposite influence of another parameter increases, which reduces the probability of obtaining one
of the worst-case solutions. But these worst-case values can still be obtained.
To summarize, the uncertainty intervals provide information about whether it is possible to

obtaining a certain solution, not whether it is probable.
4. Conclusions

This paper introduces and validates a computationally efficient routine to handle uncertainties
in MNET based material identification routines. The routine uses a linear approximation of the
FE-model used in the numerical part of the MNET. It allows the calculation of the uncertainty
intervals on the identified parameters from the uncertainty intervals of the input parameters and
the determination of the relative importance of the various input uncertainties in the total output
uncertainty. The routine also allows the comparison of two different MNET configurations based
on the reliability of the results, or the identification of the main source of uncertainty of one
particular MNET configuration.
The presented approach is not restricted to vibration based MNETs used to identify elastic

material parameters. The approach is completely generic, and can be applied to any MNET
routine of which the numerical model can be approximated with a linearized response surface in
the vicinity of the working point. The quality of the obtained results will of course depend on the
accuracy of the linear approximation of the model.
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